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Abstract. As one common precursor for both PM2.5 and
O3 pollution, NOx gains great attention because its controls
can be beneficial for reducing both PM2.5 and O3. How-
ever, the effectiveness of NOx controls for reducing PM2.5
and O3 are largely influenced by the ambient levels of NH3
and VOC, exhibiting strong nonlinearities characterized as
NH3-limited/NH3-poor and NOx-/VOC-limited conditions,
respectively. Quantification of such nonlinearities is a pre-
requisite for making suitable policy decisions but limitations
of existing methods were recognized. In this study, a new
method was developed by fitting multiple simulations of a
chemical transport model (i.e., Community Multiscale Air
Quality Modeling System, CMAQ) with a set of polyno-
mial functions (denoted as “pf-RSM”) to quantify responses
of ambient PM2.5 and O3 concentrations to changes in pre-
cursor emissions. The accuracy of the pf-RSM is carefully
examined to meet the criteria of a mean normalized error
within 2 % and a maximal normalized error within 10 %
by using 40 training samples with marginal processing. An
advantage of the pf-RSM method is that the nonlinearity
in PM2.5 and O3 responses to precursor emission changes
can be characterized by quantitative indicators, including
(1) a peak ratio (denoted as PR) representing VOC-limited or
NOx-limited conditions, (2) a suggested ratio of VOC reduc-

tion to NOx reduction to avoid increasing O3 under VOC-
limited conditions, (3) a flex ratio (denoted as FR) repre-
senting NH3-poor or NH3-rich conditions, and (4) enhanced
benefits in PM2.5 reductions from simultaneous reduction of
NH3 with the same reduction rate of NOx . A case study
in the Beijing–Tianjin–Hebei region suggested that most ur-
ban areas present strong VOC-limited conditions with a PR
from 0.4 to 0.8 in July, implying that the NOx emission re-
duction rate needs to be greater than 20–60 % to pass the
transition from VOC-limited to NOx-limited conditions. A
simultaneous VOC control (the ratio of VOC reduction to
NOx reduction is about 0.5–1.2) can avoid increasing O3
during the transition. For PM2.5, most urban areas present
strong NH3-rich conditions with a PR from 0.75 to 0.95,
implying that NH3 is sufficiently abundant to neutralize ex-
tra nitric acid produced by an additional 5–35 % of NOx
emissions. Enhanced benefits in PM2.5 reductions from si-
multaneous reduction of NH3 were estimated to be 0.04–
0.15 µg m−3 PM2.5 per 1 % reduction of NH3 along with
NOx , with greater benefits in July when the NH3-rich con-
ditions are not as strong as in January. Thus, the newly de-
veloped pf-RSM model has successfully quantified the en-
hanced effectiveness of NOx control, and simultaneous re-
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duction of VOC and NH3 with NOx can assure the control
effectiveness of PM2.5 and O3.

1 Introduction

Tropospheric ozone (O3) and fine particulate matter (PM2.5)

are two major air pollutants that exert significant effects on
human health (Forouzanfar et al., 2015; GBD-MAPS, 2016;
Cohen et al., 2017) and the global climate (Myhre et al.,
2013). Effective controls on the anthropogenic sources of O3
and PM2.5 are necessary to reduce their harmful effects on
health and climate. As one common precursor for both O3
and PM2.5, NOx significantly influences the ambient concen-
trations of O3 and PM2.5. Previous studies suggested that the
deterioration of air quality in China over past 2 decades is
highly associated with the increasing trend of national NOx
emissions (Wang et al., 2011), which are estimated to in-
crease from 11.0 Mt in 1995 to 26.1 Mt in 2010 (Zhao et
al., 2013). Since the early 2010s (late 2000s in some regions
such as Pearl River Delta), strict regulations have been im-
plemented on power plants and vehicle emissions, leading
to a considerable NO2 reduction witnessed by the declin-
ing trend in satellite-retrieved NO2 column densities (i.e., re-
duced by 32 % from 2011 to 2015; Liu et al., 2016). How-
ever, the reduction in PM2.5 is not as significant as that in
NO2 or SO2 (Fu et al., 2017). The reason might be asso-
ciated with the increases in NH3, which has not been well
controlled to date in China and exhibits an increasing trend
of nearly 20 % from 2011 to 2014 observed from satellite re-
trievals (Fu et al., 2017). Such increases in NH3 weakened
the control effectiveness of SO2 and NO2 in PM2.5 reduc-
tion (Wang et al., 2011; Fu et al., 2017). Worse still, recently
O3 concentrations have exhibited an increasing trend in some
cities in the Yangtze River Delta and Pearl River Delta (Li et
al., 2014). The number of days on which O3 concentration
exceeded the national standard (i.e., 8 h maxima level less
than 160 µg m−3) increased from 7.2 % in 2010 to 12.7 %
in 2015 in Shanghai. The annual averaged O3 increased by
0.86 ppb yr−1 from 2006 to 2011 in Guangdong, accompa-
nied by a corresponding NO2 reduction of 0.61 ppb yr−1 (Li
et al., 2014). The recent observation data suggested a contin-
ued increasing trend of 8 h maxima O3 in Zhuhai (from 128
to 142 µg m−3) and Shenzhen (from 122 to 134 µg m−3) in
the Pearl River Delta from 2013 to 2016. Such an increase
in O3 is likely to be associated with the NOx reductions in
the area that are located in the volatile organic compound
(VOC)-limited conditions (i.e., decreased NOx leads to in-
creased O3), implying the disbenefit of NOx controls for O3
reduction under VOC-limited conditions. How to assure the
effectiveness of NOx controls for reducing O3 and PM2.5 be-
comes a difficult challenge for policy design (Cohan et al.,
2005; Tsimpidi et al., 2008).

To address that challenge, studies on investigating the rela-
tionship among the responses of O3 and PM2.5 to precursor
emission changes have been conducted. Indicators such as
NOy , H2O2 /HNO3 and H2O2 / (O3+NO2) as well as the
degree of sulfate neutralization, gas ratio and adjusted gas
ratio are used to define the O3 and PM2.5 chemistry in many
studies (Sillman et al., 1995; Tonnesen et al., 2000; Zhang et
al., 2009; Liu et al., 2010; Ye et al., 2016). The aforemen-
tioned indicators can provide rapid assumptions for the base-
line status of pollution sensitivities to precursor emissions.
Modeling studies with chemistry–transport models (CTMs)
have been conducted to investigate the responses of O3 and
PM2.5 to emission perturbation through sensitivity analyses,
such as decoupled direct methods (DDMs) and high-order
DDMs (Hakami et al., 2003; Cohan et al., 2005), and source
apportionment technology such as ozone source apportion-
ment technology (Dunker et al., 2002), particulate matter
source apportioning technology (Wagstrom et al., 2008) and
the integrated source apportionment method (Kwok et al.,
2013, 2015). A statistical response surface model (RSM)
has been developed and successfully used in O3 and PM2.5
response simulations in our previous studies (Wang et al.,
2011; Xing et al., 2011, 2017a; Zhao et al., 2015a, 2017; Fo-
ley, et al., 2014). In contrast to sensitivity and source appor-
tionment techniques, the RSM provides a real-time response
to a wide range of emission perturbation, from −100 % to-
tally controlled to+20 % (Zhao et al., 2017) or even+100 %
doubled baseline level (Xing et al., 2011), and thus is able
to quantify the strong nonlinear responsiveness of O3 and
PM2.5 to reduction in their precursor emissions, manifested
as the VOC-limited or NOx-limited O3 chemistry (Seinfeld
et al., 2006) and NH3-rich or NH3-poor chemistry for in-
organic PM chemistry (Zhang et al., 2009). The traditional
RSM model is based on regression from thousands of “brute-
force” simulations with a CTM by using a maximum likeli-
hood estimation – experimental best linear unbiased predic-
tors (Santner, et al., 2003) (hereafter referred as “regression-
based RSM”). However, such a large number of CTM sim-
ulations (each simulation represents one training sample) re-
quired by the RSM results in a heavy computing burden (usu-
ally one CTM scenario for a month a simulation needs 400
CPU hours, depending on the simulated domain size and se-
lected mechanism), which largely limits the application of
a traditional RSM. Moreover, the regression-based RSM is
treated as a black box, which makes it not easy to investigate
the nonlinearity (e.g., peak value, derivative) of the predicted
system.

To address the issue in a regression-based RSM, this study
aims to develop a polynomial family of functions in the RSM
to represent the responsive behavior of O3 and PM2.5 con-
centrations to precursor emissions. The RSM with polyno-
mial functions is referred to as “pf-RSM” in the remainder
of this paper. Effectiveness of air pollution controls by NOx
and other precursor emission reductions was investigated by
the newly developed pf-RSM.
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2 Methods

2.1 Model setup and data

The data used in this study were obtained from a re-
cent regression-based RSM study conducted in the Beijing–
Tianjin–Hebei (BTH) region in China. One baseline scenario
and 1100 brute-force controlled scenarios were performed
using the Community Multiscale Air Quality Modeling Sys-
tem (CMAQ) (version 5.0.1) in a 12× 12 km domain over
the BTH region. We used the same meteorological conditions
for those multiple scenarios and only the emissions were
changed in different scenarios. The details of the Weather
Research and Forecasting–CMAQ model and emissions were
described in a previous study (Zhao et al., 2016). We used the
SAPRC99 gas-phase chemistry module (Carter, 2003) and
the sixth-generation CMAQ aerosol model (AERO6) (Ap-
pel et al., 2013) with the treatment of organic aerosols re-
placed with the 2D-VBS (two-dimensional volatility basis
set) framework (Zhao et al., 2015b, 2017). The simulation
period is January and July in 2014 to represent winter and
summer, respectively. The emission data were developed by
Tsinghua University based on a bottom-up method with a
high spatial and temporal resolution (Zhao et al., 2016).

The responses of O3 (daily 1 h maxima) and PM2.5 (daily
24 h average) to the emissions of five groups of precursors,
namely NOx , SO2, NH3, VOC+ intermediate VOC (denoted
as “VOCs”) and primary organic aerosol (POA) from five re-
gions, namely Beijing, Tianjin, northern Hebei (denoted as
“HebeiN”), eastern Hebei (denoted as “HebeiE”) and south-
ern Hebei (denoted as “HebeiS”) were analyzed. The O3
and PM2.5 concentrations were analyzed in urban areas of
prefecture-level cities in the five target regions (Zhao et al.,
2017). The performance of the model system was evaluated
in our previous paper (Zhao et al., 2017; Xing et al., 2017a),
which suggested acceptable CMAQ model performance that
meets the recommended benchmark in the comparison with
ground-observed concentrations, as well as acceptable per-
formance of the regression-based RSM with mean normal-
ized errors within 3 %.

In the regression-based RSM developed previously, the
system supports the investigation of different emission
changes for five precursors in five regions (i.e., extended
RSM, ERSM described in Zhao et al., 2015a and Xing et
al., 2017a). In this study, for simplification, the pf-RSM was
built on the simultaneous change in one or all regions (i.e.,
controls separately in an individual region, or jointly controls
in all five regions with the same control ratio). However, the
pf-RSM can be extended to pf-ERSM following the same
structure as the regression-based ERSM but using polyno-
mial functions for PM2.5, O3 and precursors.

2.2 Development of the pf-RSM

In general, tropospheric O3 and PM2.5 concentrations are
contributed to by its sources and sinks through a series of
atmospheric processes, such as horizontal or vertical advec-
tion and diffusion, gas-phase chemistry, and deposition. The
nonlinear behavior in each of these processes contributes to
the nonlinearity in the responses of concentrations to pre-
cursor emissions. Similar responsive functions can be ex-
pected across regions and time. For example, a universal
ozone isopleth diagram developed using the empirical ki-
netic modeling approach of the U.S. Environmental Protec-
tion Agency (Gipson et al., 1981) represents the general O3
responsiveness to NO and VOC concentrations. A fitting-
based model was developed to simplify the O3 responsive-
ness to precursor emissions by using a general formulation
(Heyes, et al., 1996). The simplified formulation of concen-
trations to emissions can be easily applied to optimize con-
trol strategies (Heyes et al., 1997), which is a great advantage
over the regression-based model. Moreover, with the fitting-
based RSM, the inclusion of a prior knowledge of pollutant
responses to emissions might substantially reduce the case
number required to build the RSM (see Fig. 1).

In this study, the prior knowledge of pollutant responses to
emissions was characterized as a series of polynomial func-
tions by the previous developed regression-based RSM. The
accuracy of the regression-based RSM in representing the
nonlinearity in pollutant response to emissions has been ex-
amined thoroughly using different methods including cross
validation, out-of-sample validation and isopleth validation
in previous studies (Xing et al., 2011, 2017a; Wang et al.,
2011; Zhao et al., 2015, 2017). The relationship among pol-
lutant responses to emissions followed by the basic chemical
functions and physical laws is implicitly represented in the
regression-based RSM. In this study, however, we adopted a
linear combination of polynomial bases (i.e., 1, x, x2, x3. . . )
to explicitly parameterize the pollutant responses to emis-
sions. The coefficients of the function were estimated by fit-
ting the function with training samples selected brute-force
to match with the regression-based RSM prediction (i.e., iso-
pleth validation) and the CMAQ simulations (i.e., out-of-
sample validation). The flow scheme of the development of
the pf-RSM is displayed in Fig. 2. The structure of the poly-
nomial function to be fitted is expressed as follows:

1Conc=
n∑
i=1

Xi ·
(
ENOx

)ai
·
(
ESO2

)bi
·
(
ENH3

)ci (1)

· (EVOCs)
di · (EPOA)

ei ,

where1Conc is the response of O3 and PM2.5 concentrations
(i.e., change to the baseline concentration), and the concen-
tration value can be hourly, monthly or annual averages at ei-
ther a single grid cell or aggregated grids in the target region;
ENOx , ESO2 , ENH3 , EVOCs and EPOA are the change ratios
of NOx , SO2, NH3, VOCs and POA emissions, respectively,
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Figure 1. Schematic plot of comparison between the traditional RSM (regression-based) and the RSM with a polynomial function (denoted
as “pf-RSM”, fitting-based).

related to the baseline (i.e., baseline= 0); ai,bi,ci,di and
ei represent the nonnegative integer powers of ENOx , ESO2 ,
ENH3 , EVOCs and EPOA, respectively; Xi is the coefficient
of the term i. 1Conc is calculated from a polynomial func-
tion of five variables (ENOx ,ESO2 ,ENH3 ,EVOCs,EPOA). The
number of terms (n), coefficients (Xi) and degrees (ai , bi ,
ci , di , ei) of each term were determined using the following
steps.

2.2.1 Degree examination

First, the degrees of the five variables were determined indi-
vidually by fitting the responsive function with a polynomial
of a single indeterminate plot (Fig. 3). The PM2.5 responses
to the change in each precursor emission estimated using the
RSM were fitted by a series of polynomials of a single inde-
terminate plot with different orders from the first (linear) to
the fifth degree, as shown in following functions (similar to
Eq. 1):

1Conc=
a∑
i=1

Ai · (EP)
i, (2)

where 1Conc is the response of O3 and PM2.5 concentra-
tions to changes in individual precursor emissions; EP is the
change ratio of one precursor (the subscript “P” can repre-
sent NOx , SO2, NH3, VOCs or POA) emission related to the
baseline; Ai is the coefficient of term i; and the superscript
a is the degree of precursor P, which determined the order of
the best fitting polynomials.

Figure 3a presents PM2.5 responses to changes in NOx ,
showing that PM2.5 responses cannot be well fitted with
polynomials of the order lower than 3. Better perfor-
mance is shown in fitting with a fourth-order polynomial

Table 1. Degree of variables in the polynomial function of response
to emission changes.

Pollutant ENOx ESO2 ENH3 EVOCs EPOA

PM2.5 4 1 3 2 1
O3 5 1 1 3 1

∗ ENOx , ESO2 , ENH3 , EVOCs and EPOA is the change ratio of NOx , SO2,
NH3, VOCs and POA emissions, respectively.

Figure 2. Flow scheme of pf-RSM development.

(R= 0.999, MeanFE= 0.2) than with a third-order polyno-
mial (R= 0.987, MeanFE= 0.6). Thus the degree of NOx to
PM2.5 should be 4. By contrast, PM2.5 responses to changes
in SO2 (Fig. 3a) can be well fitted linearly; thus, the degree of
SO2 to PM2.5 is 1. The degrees of five precursors to O3 and
other pollutants were also examined, and the results are sum-
marized in Table 1. Highly nonlinear responses were found
for both O3 and PM2.5 to the NOx , VOC and NH3 emissions.
That might be associated with the strong nonlinearity in the
atmospheric oxidation reactions and aerosol thermodynam-
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Figure 3. Fitting the PM2.5 responsive function with a polynomial
of a single indeterminate plot.

ics which are parameterized with the SAPRC99 gas-phase
chemistry module and the AERO6 with 2D-VBS module, re-
spectively, in CMAQ used in this study.

2.2.2 Term selection

The correlation among variables (i.e., product term) was de-
termined in pairs by fitting the responsive function with a
polynomial of a two-indeterminate isopleth, expressed as fol-
lows:

1Conc=
b∑
i=1

Bi ·
(
EP1

)a1
i ·
(
EP2

)a2
i , (3)

where 1Conc is the response of O3 and PM2.5 concentra-
tions to changes in individual precursor emissions; EP1 and
EP2 are the change ratios of two precursor (P1 and P2 can
represent any two of NOx , SO2, NH3, VOCs or POA) emis-
sions related to the baseline; Bi is the coefficient of product
term i; a1

i and a2
i are the degrees of precursors P1 and P2,

respectively; and the superscript b is the number of total in-
teraction terms between P1 and P2 (i.e., a1

i multiplied by a2
i ).

The product term EP1EP2 represents the interaction be-
tween P1 and P2. If no such interaction occurs, the prod-
uct term EP1EP2 is 0. The interaction examination was con-
ducted by comparing predicted responses to joint changes
in two precursor emissions between with-interaction Eq. (4)

and no-interaction Eq. (5).

1Conc=
a∑
i=1

Ai ·
(
EP1

)i
+

a′∑
j=1

Aj
′
·
(
EP2

)j (4)

+

b∑
i=1

Bi ·
(
EP1

)a1
i ·
(
EP2

)a2
i

1Conc=
a∑
i=1

Ai ·
(
EP1

)i
+

a′∑
j=1

Aj
′
·
(
EP2

)j (5)

If responses calculated using Eq. (5) are equal or approxi-
mate to those calculated using Eq. (4), no interactions be-
tween P1 and P2 would occur (i.e., the product term EP1EP2

is 0). If responses are not equal or approximate to each other,
interactions between P1 and P2 cannot be overlooked. How-
ever, we wanted to limit the number of terms in the polyno-
mial function; thus, we did not include all interaction terms
between P1 and P2 in the function. Instead, we gradually se-
lected interaction terms between P1 and P2 from Eq. (3) until
the responses matched with those calculated using Eq. (4).

An example was shown in Supplement Fig. S1, which
presents PM2.5 responses to joint changes in NOx and NH3
emissions in July. The PM2.5 response calculated using
Eq. (4) (with all interaction terms) was consistent with that
estimated using the regression-based RSM. The PM2.5 re-
sponse calculated using Eq. (5) (with no interaction terms)
exhibited a noticeable discrepancy compared with those cal-
culated using Eq. (4) and estimated using the regression-
based RSM. With one selected interaction term, the PM2.5
response exhibited a substantial improvement compared with
that calculated using Eq. (4), thereby indicating interactions
between NOx and NH3 emissions for PM2.5. The results of
term selections for both O3 and PM2.5 are summarized in
Fig. 4. The interaction terms of NOx and VOCs are included
for both pollutants. SO2 and POA did not interact with other
species.

2.2.3 Sampling optimization

Training samples were generated to fit the polynomial func-
tion for each pollutant. To minimize the number of CTM
simulations (one simulation scenario represents one train-
ing sample), the number of training samples needed to be
as small as possible, but greater than the number of terms
(i.e., unknown coefficients) in the polynomial function. Our
previous study (Xing et al., 2011) suggested that samples
generated through uniform methods, such as Latin hyper-
cube sampling (LHS) and a Hammersley quasi-random se-
quence sample (HSS), could provide even distributions for
individual sources. However, additional marginal processing
is recommended for its ability to improve the performance of
prediction at margins.

Sensitivity analysis of the number and distributions of
training samples was conducted in this study. Groups of 20,

www.atmos-chem-phys.net/18/7799/2018/ Atmos. Chem. Phys., 18, 7799–7814, 2018
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Figure 4. Term selections for PM2.5 and O3 in the polynomial function.

30, 40 or 50 training samples were sampled using uniformly
distributed HSS. Additional marginal processing was con-
ducted using a power function (n= 2) from uniformly dis-
tributed HSS on the samples, expressed as follows:

TX=



(
X− a

b− a

)2

× 2× (b− a)+ a, X ≤ a+
b− a

2[
1−

(
b−X

b− a

)2

× 2

]
× (b− a)+ a, X > a+

b− a

2

,

(6)

whereX is sampled from a uniformly distributed HSS in sec-
tion [a, b] (in this study we selected [0, 1.2], which denotes
that emission changes were from all controlled to a 20 % in-
crease) and TX represents the samples after the marginal pro-
cessing.

The training samples were predicted using the regression-
based RSM and subsequently used to fit the polynomial func-
tion for all pollutants. We selected two datasets as out of sam-
ple to validate the fitting polynomial function, i.e., jointly
controls in five regions (denoted as “OOS100”) and single
regional controls (denoted as “OOS15”) (see Table 2). The
control matrixes of these two datasets are provided in the
Supplement (Table S1). The method of leave-one-out cross
validation (LOOCV) was used to examine whether the statis-
tical polynomial regression was overfitting. The definition of
LOOCV is to use a single sample from the original datasets
as the validation data, and the remaining sample as the train-
ing data to build pf-RSM.

The predictive performance of the pf-RSM was evalu-
ated using five statistical indices, namely the mean normal-
ized error (MeanNE), maximal normalized error (MaxNE),
mean fractional error (MeanFE), maximal fractional error
(MaxFE) and correlation coefficient (R), each calculated as

follows:

MeanNE=
1
N

∑N

i=1

|Mi −Oi |

Oi
(7)

MaxNE=max
(
|Mi −Oi |

Oi

)
(8)

MeanFE=
1
N

∑N

i=1

|Mi −Oi |

Mi +Oi
× 2 (9)

MaxFE=max
(
|Mi −Oi |

Mi +Oi
× 2

)
(10)

R =

√√√√√
[∑N

i=1
(
Mi −M

)(
Oi −O

)]
∑N
i=1
(
Mi −M

)2∑N
i=1
(
Oi −O

)2 , (11)

where Mi and Oi are the pf-RSM-predicted and CMAQ-
simulated value of the ith data in the series, which can be
a series of days, grid cells or control cases, and M and O are
the average pf-RSM-predicted and CMAQ-simulated value
over the series.

2.3 Indicators for representing nonlinearity in
responses to precursor emissions

In our previous RSM studies, indicators representing the
nonlinearity of O3 and PM2.5 responses to precursor emis-
sions have been defined as the peak ratio (PR) for O3 (Xing
et al., 2011) and flex ratio (FR) for PM2.5 (Wang et al., 2011),
respectively.

For O3, the PR is the NOx emissions that produce maxi-
mum O3 concentrations under baseline VOC emissions (see
in Fig. 5a). A PR lower than 1 (i.e., baseline) indicates that
the baseline condition is VOC limited; in all other cases, the
baseline condition is NOx limited.

The previous calculations for the PR were performed
through a looping procedure in the RSM statistical system,
which is not straightforward. One advantage of the pf-RSM
is that the PR can be directly calculated from the polynomial
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Table 2. Out-of-sample dataset for validation.

Description Control factor Number of cases

Jointly controls in five regions
(OOS100)

Five precursors including NOx , SO2,
NH3,
VOCs and POA in all regions

100, Latin hypercube sampling
between 0.0 and 1.2 (baseline= 1.0)

Single regional controls
(OOS15)

Five precursors including NOx , SO2,
NH3,
VOCs and POA in individual region

15, three samples in each region by 0.1,
0.5
and 1.15 (baseline= 1.0)
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Figure 5. Definition of peak ratio (PR) and suggested VOC /NOx
ratio basing on the 2-D isopleths of O3 sensitivity to NOx and VOC
emission changes (an example in Beijing in July).

function as follows:

PR= 1+ENOx | ∂1ConcO3
∂ENOx

=0
ENOx ε [a,b] , (12)

where
∂1ConcO3
∂ENOx

is the first derivation of the ConcO3 response
to ENOx .

In addition, we can further quantify how much simulta-
neous control of VOC is required to avoid increasing O3
from the NOx controls under VOC-limited conditions (see
in Fig. 5b). The suggested VOC controls can be represented
as the ratio of VOC to NOx (denoted VNr), which can be
calculated as follows:

VNr=X| ∂1ConcO3
∂ENOx

=0
when PR< 1,X = EVOC/ENOx , (13)

(a) Flex ratio (FR) 

 

(b) Extra benefit 
(ΔCPM2.5) from 
simultaneous reduction 
of NH3 

 
 

Figure 6. Definition of flex ratio (FR) and extra benefit from si-
multaneous reduction of NH3 basing on the 2-D isopleths of PM2.5
sensitivity to NOx and NH3 emission changes (an example in Bei-
jing in July).

where
∂1ConcO3
∂ENOx

is the first derivation of the ConcO3 response
to ENOx when EVOC =X×ENOx .

For PM2.5, here we defined the FR as the NH3 emission ra-
tio at the flex nitrate (or PM2.5) concentrations (i.e., when the
second derivation of the function of concentration sensitivi-
ties to NH3 emissions is zero) under baseline NOx emissions
(see in Fig. 6a). A FR greater than 1 indicates that the base-
line condition is NH3 poor (i.e., large sensitivity of PM2.5 to
NH3); in all other cases, the baseline condition is NH3 rich
(small sensitivity of PM2.5 to NH3). The values of FR also
suggest the transition point between two schemes.
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Similarly, the FR can be directly calculated from the poly-
nomial function as follows:

FR= 1+ENH3 | ∂21ConcPM
∂ENH3

2 =0
ENH3ε [a,b] , (14)

where ∂21ConcPM
∂ENH3

2 is the second derivation of the ConcPM re-

sponse to ENH3 .
Further, we can quantify the extra benefit in PM2.5 reduc-

tions (denoted as 1C) from simultaneous reduction of NH3
along with the control of NOx (see in Fig. 6b), which can be
calculated as follows:

1C =

(
∂1ConcPM2.5

∂ENOx
|ENH3=ENOx

)
(15)

−

(
∂1ConcPM2.5

∂ENOx
|ENH3=0

)
,

where
∂1ConcPM2.5
∂ENOx

|ENH3=ENOx
is the first derivation of

the ConcPM2.5 response to ENOx when ENH3 = ENOx ;
∂1ConcPM2.5
∂ENOx

|ENH3 = 0 is the first derivation of the ConcPM2.5

response to ENOx when ENH3 = 0.
The PR and FR are the results of 1+ENOx and 1+ENH3 ,

respectively, corresponding to the extreme value point and
inflexion point of ConcO3 and ConcPM, respectively, in sec-
tion [a, b] (i.e., [0, 1.2] in this study). The ratios of VOC to
NOx and 1C were estimated for the five regions in BTH.

3 Results

3.1 Sensitivity analysis on training sample number and
distribution

Table 3 summarizes the performance of the pf-RSM with
different training samples for predicting PM2.5 and O3. For
out-of-sample validation (i.e., OOS100 and OOS15), good
agreement was observed in all cases. Even with 20 training
samples (only five more than the number of terms in the poly-
nomial function), the MeanNE and MeanFE were lower than
3.1 and 1.5 %, respectively, and the MaxNE and MaxFE were
lower than 15.1 and 7.0 %, respectively. The R values were
greater than 0.8. The performance improved with an increase
in training sample number. When 50 training samples were
selected, the MeanNE and MeanFE were lower than 1.7 and
0.8 %, respectively, and the MaxNE and MaxFE were lower
than 8.7 and 4.2 %, respectively. The R values were greater
than 0.94.

Additional marginal processing improved the performance
of PM2.5 and O3 prediction by reducing the maximal er-
rors rather than the mean errors. In all cases, the MaxNE
and MaxFE in O3 decreased from 12.4 and 5.8 % to 5.5
and 2.7 %, respectively. The MaxNE and MaxFE in PM2.5
slightly decreased from 15.1 and 6.98 % to 15.0 and 6.97 %,
respectively.

To meet the criteria of MeanNE within 2 % and MaxNE
within 10 % (i.e., uncertainty of pf-RSM), which is compa-
rable to the performance of previous regression-based RSMs,
the use of 40 training samples with marginal processing (to
improve boundary conditions) is recommended.

Similar results are found in the cross validation (i.e.,
LOOCV), as the performance in pf-RSM gets better along
with the increase in sample numbers. Basically, the statis-
tics of cross validation are in the same order as shown in
out-of-sample validations (OOS100 and OOS15), except for
the case of 20 training samples with marginal processing
(worse performance due to underfitting problem). One inter-
esting finding is that the pf-RSM with marginal processing
exhibits worse performance than that with an even sampling
method in cross validation. That is because the samples with
marginal processing are located closer to margin areas where
it is more difficult to predict (Xing et al., 2011). This also
implies that the samples with marginal processing have bet-
ter representation of the variability. Nevertheless, the results
of validations suggest the pf-RSM with the current number
of samples is not overfitted, and the number of training sam-
ples selected in fitting the system is recommended to be 40
training samples with marginal processing.

One kind of visual comparison, i.e., isopleth validation of
the pf-RSM with different training samples was conducted,
and its details are shown in the Supplement (Fig. S2–S9).
The performance of the pf-RSM with less than 40 training
samples exhibited a noticeable discrepancy (i.e., spatial pat-
tern of the response under the controls) compared with that
of the regression-based RSM. Such discrepancy is caused
by the underfitting issue, implying that the number of train-
ing samples is not large enough to capture the nonlinearity
in the model system. The issue can be addressed by adding
more training samples to fit the model. The 40 training sam-
ples presented good agreement with the predictions of the
regression-based RSM. An improved sampling method is
also important for reducing the biases. We can see that ad-
ditional marginal processing also improved the performance
of the pf-RSM.

3.2 Application of the polynomial function at different
locations and times

First, we applied the pf-RSM in each grid cell in the sim-
ulated domain. The base case and 40 controlled scenarios
simulated by the CMAQ model (41 training samples in to-
tal) were used to fit the function of each grid cell. Two out-
of-sample CMAQ cases (i.e., Case 1: moderate control with
ENOx , ESO2 , ENH3 , EVOCs and EPOA=−49, −45, −20,
−64 and −20 % respectively; Case 2: strict control with
ENOx , ESO2 , ENH3 , EVOCs and EPOA=−76, −79, −81,
−83 and −73 %, respectively) were used to validate the per-
formance of the pf-RSM. These two scenarios are selected
from the OOS100 to represent two kinds of emission levels,
moderate and strict, for the purpose of analyzing the pf-RSM
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performance under different locations and times. Please note
that the validation results might slightly change if we change
the scenarios; however, the performance should be similar to
the two we presented here (see comparison with the other
nine cases shown in Fig. S10).

Figures 7 and 8 present the spatial distribution of CMAQ-
simulated and pf-RSM-predicted PM2.5 and O3 in the base-
line and their responses in two control scenarios. PM2.5 pre-
dictions by the pf-RSM exhibited the same values in the
baseline scenario as those simulated by the CMAQ model
because the 1Conc is 0 with no perturbations in emissions;
Eq. (1). With the reduction of emissions in the two control
cases, the PM2.5 and O3 concentrations were reduced sub-
stantially in the CMAQ and pf-RSM predictions. The pf-
RSM and CMAQ made very similar predictions for both
cases, with normalized errors all within 5.6 % for PM2.5 and
2.0 % for O3 across the domain.

The performance of PM2.5 and O3 prediction in the pf-
RSM across grid cells was summarized in Table S2. Larger
errors were shown in Case 2 than in Case 1 because of rela-
tively poor performance at the margin areas, where emissions
were greatly controlled (Xing et al., 2011). Under moderate
control condition (i.e., Case 1), smaller errors were observed
in polluted regions for PM2.5 and O3 because of larger de-
nominators (i.e., a high concentration). However, under strict
control conditions (i.e., Case 2), larger errors were evident
in more polluted regions, particularly for PM2.5, indicating
that the biases due to marginal effects were more prevalent
in polluted regions.

Second, we applied the pf-RSM to each day in two sim-
ulated months (i.e., January and July, 2014). The same 41
training samples and two additional CMAQ cases were used
to fit and validate the pf-RSM on each day.

The daily series of the CMAQ-simulated and pf-RSM-
predicted 24 h averaged PM2.5 and 1 h maxima O3 in the
baseline and two control scenarios are shown in Fig. 9. The
day-to-day variability in O3 depends on the budget of O3
source and sink influenced by meteorological variables in-
cluding actinic flux, temperature, humidity and precipita-
tion, etc. Generally, the pf-RSM-predicted daily PM2.5 and
O3 concentrations matched with CMAQ model simulations
fairly well, with normalized errors within 12.7 and 6.5 % for
PM2.5 and O3, respectively. Substantial reductions in PM2.5
were observed in Case 2, in which strict controls were ap-
plied. Noticeable biases were observed on 23 January when
PM2.5 levels were high in Beijing and HebeiS. The meteoro-
logical conditions will also play an important role in the ef-
fectiveness of emission controls. Reductions in O3 were no-
ticeable in both control cases, particularly on days when O3
levels were high. However, increases in O3 were observed on
21–23 July (precipitation event occurred across North China
Plain), after the controls were applied and when O3 levels
were low. This can be explained by the O3 chemistry scheme
being at a strong VOC-limited conditions on days with low
O3 levels, resulting in enhanced O3 from NOx controls (Xing

et al., 2011). Thus, the emission controls usually become less
effective under unfavorable meteorological conditions for O3
production. The pf-RSM also reproduced increases in O3 on
those days.

The performance of PM2.5 and O3 prediction in the pf-
RSM throughout the simulation period was summarized in
Table S3. The MeanNEs for PM2.5 and O3 were within 3.7
and 1.3 %, respectively. Larger errors were evident in Case 2
than in Case 1 because of poor performance at margin areas,
where emissions are greatly controlled (Xing et al., 2011).
These biases in Case 2 became larger on more polluted days,
particularly for PM2.5, suggesting that marginal biases were
more evident during polluted period.

3.3 Quantification of nonlinearities in control
effectiveness for reducing PM2.5 and O3

The nonlinearity in the pollution response to emissions leads
to an either enhanced or reduced effectiveness of emis-
sion controls. In previous studies, the concept of NH3-
limited/NH3-poor and NOx-/VOC-limited conditions was
used widely to demonstrate the influence of NH3 and VOC
on effectiveness of NOx controls for reducing PM2.5 and O3,
respectively. However, some key questions were not well ad-
dressed, such as what percentage of NOx or NH3 is over-
abundant and what percentage of VOC needs to be reduced
simultaneously to avoid increased O3. In this study, the newly
developed pf-RSM explicitly represents the response, and the
enhanced effectiveness can be easily quantified. The indica-
tors defined in Sect. 2.3 can be used to quantify the nonlin-
ear effectiveness of emission control for reducing PM2.5 and
O3. The FR values across grid cells were calculated using
Eq. (14) for PM2.5 chemistry in January (Fig. 10a). Most of
the study regions exhibited FR values lower than 1, suggest-
ing strong NH3-rich conditions. These results are consistent
with those of previous studies (Liu et al., 2010; Wang et al.,
2011). Larger FR values (slightly lower than 1.0) were shown
in the central and southern regions (i.e., Beijing, Tianjin and
HebeiS) than in other regions, suggesting that the PM2.5 con-
centrations were sensitive to both NOx and NH3 controls,
possibly because of the high SO2 and NOx emissions in Bei-
jing, Tianjin and HebeiS (Zhao et al., 2016), which led to
the high consumption of NH3 neutralized with H2SO4 and
HNO3, as well as high PM2.5 concentrations (Fig. 5).

Table 4 summarized the indicators at urban areas of
prefecture-level cities in the five target regions. In both Jan-
uary and July, most of the urban areas (except strong NH3-
poor conditions in HebeiN in July) present NH3-rich condi-
tion with a FR from 0.75 to 0.95 (Table 4), implying NH3
is sufficiently abundant to neutralize extra nitric acid pro-
duced by an additional 5–35 % (i.e., =1 /FR-1) of NOx
emissions. The result is consistent with our previous study
(Wang et al., 2011), which reported that NH3 is sufficiently
abundant to neutralize extra nitric acid produced by an ad-
ditional 25 % of NOx emissions in the North China Plain
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Figure 7. Spatial distribution of CMAQ-simulated and pf-RSM-predicted PM2.5 in the baseline and PM2.5 responses in two control scenarios
(monthly averages in January 2014, unit: µg m−3, ENOx , ESO2 , ENH3 , EVOCs and EPOA in Case 1 and Case 2 are −49, −45, −20, −64,
and −20 and −76, −79, −81, −83, and −73 %, respectively).

Figure 8. Spatial distribution of CMAQ-simulated and pf-RSM-predicted O3 in baseline and O3 responses in two control scenarios (monthly
averages of daily 1 h maxima O3 in July 2014, unit: ppb, ENOx , ESO2 , ENH3 , EVOCs and EPOA in Case 1 and Case 2 are −49, −45, −20,
−64, and −20 and −76, −79, −81, −83, and −73 %, respectively).
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Figure 9. Daily series of CMAQ-simulated and pf-RSM-predicted daily averaged PM2.5 in January and daily 1 h maxima O3 in July 2014
in the baseline and two control scenarios (ENOx , ESO2 , ENH3 , EVOCs and EPOA in Case 1 and Case 2 are −49, −45, −20, −64, and −20
and −76, −79, −81, −83, and −73 %, respectively).

based on a traditional regression-based RSM study. The extra
benefit in PM2.5 reductions from simultaneous reduction of
NH3 along with the control of NOx was estimated to be 0.04–
0.15 µg m−3 PM2.5 per 1 % reduction of NH3. A larger ben-
efit in PM2.5 reductions by simultaneous reduction of NH3
was found in July when the NH3-rich conditions were not as
strong as in January.

The PR values for O3 chemistry in July were calculated
using Eq. (12), as shown in Fig. 10b. Different PR values
were observed in urban and downwind areas. That is consis-
tent with the findings of previous studies (Xing et al., 2011),
which used a traditional regression-based RSM and found
that the PR changes from 0.8 to 1.2 as the distance from the

city center increases. Smaller PRs (0.4–0.8, see Table 4) were
evident in urban areas (i.e., megacities such as Beijing, Tian-
jin, Shijiazhuang and Tangshan), where NOx emissions are
saturated, resulting in strong VOC-limited conditions. Our
results are consistent with the observational studies that use
an indicator to identify the O3 chemistry. For example, Liu
et al. (2016) studied the ratios of HCHO over NO2 from the
satellite retrievals and found that local ozone production in
urban Beijing is VOC limited when there are no substantial
changes in NOx emission in 2015. Chou et al. (2009) found
that the Beijing urban area was a VOC-limited region based
on the observation of NO, NOx and NOy at the Peking Uni-
versity site from 15 August to 11 September in 2006. Jin and

Atmos. Chem. Phys., 18, 7799–7814, 2018 www.atmos-chem-phys.net/18/7799/2018/
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Table 4. Estimation of indicators that represent the nonlinear control effectiveness for reducing PM2.5 and O3 in the Beijing–Tianjin–Hebei
region.

Indicator1 Month Beijing Tianjin HebeiN HebeiE HebeiS

Peak ratio (PR) January 0.11 0.10 0.19 0.15 0.13
July 0.76 0.45 >1.2 0.74 0.59

Suggested reduction ratio of VOC to NOx to avoid
increasing O3

January 3.8 3.5 2.5 2.8 3.0

July 0.6 1.2 −
2 0.5 1.1

Flex ratio (FR) January 0.77 0.73 0.76 0.77 0.79
July 0.91 0.92 >1.2 0.77 0.94

Extra benefit from simultaneous reduction of NH3
(µg m−3 PM2.5 per 1 % reduced NH3)

January 0.064 0.128 0.041 0.077 0.064

July 0.148 0.145 0.074 0.138 0.126

1 Indicators are calculated based on monthly averaged concentrations at urban areas of prefecture-level cities in the five target regions. 2 Since the PR is larger
than 1.2 in HebeiN, the NOx control will always lead to a reduction in O3.

Figure 10. Spatial distribution of the indicators for PM2.5 (flex ra-
tio, FR) in January and O3 chemistry (peak ratio, PR) in July 2014.

Holloway (2015) calculated the ratio of HCHO to NO2 from
the OMI instrument aboard the Aura satellite and found the
O3 production is more likely to be VOC limited over urban
areas and NOx limited over rural and remote areas in China
from 2005 to 2013.

The PR values calculated in this study also indicate that the
control of NOx (with less than 20–60 % reduction,= 1−PR)
could result in an increase in O3; however, O3 would de-
crease with substantial control of NOx (with greater than
20–60 % reduction). To avoid increasing O3 during the tran-
sition from VOC-limited to NOx-limited conditions, a simul-
taneous VOC reduction by 0.5–1.2 times the rate of NOx re-
duction is recommended. Stronger VOC-limited conditions
are found in January, while O3 concentration is considerably
lower than in July. However, the strong VOC-limited con-
ditions in January will also lead to a considerable disben-
efit of NOx reduction for PM2.5 controls (see the isopleth
plot of PM2.5 response to NOx and NH3 emission changes
in Fig. S6, also found in Zhao et al., 2017) because the en-
hanced atmospheric oxidation ability from reducing NOx un-

der VOC-limited conditions will facilitate the formation of
secondary aerosols. Therefore simultaneous VOC reduction
can help avoid such increase of PM2.5 associated with NOx
controls under strong VOC-limited condition in January. No-
tably, the O3 discussed in this paper refers to the monthly
averages of daily 1 h maximum values. The PR values varied
considerably between the clean and polluted days, suggest-
ing mostly NOx-limited conditions during polluted periods,
which are usually subject to a more severe O3 burden (Xing
et al., 2011). Nevertheless, the control of NOx emissions is
critical for reducing regional O3 and PM2.5; however, it is
recommended to simultaneously reduce VOC and NH3 emis-
sions along with NOx reduction to avoid the risk of increas-
ing O3 and gain extra benefit in PM2.5 reduction.

4 Summary and conclusion

Quantification of the effectiveness of air pollution controls by
emission mitigation needs an accurate representation of the
nonlinear responses of ambient O3 and PM2.5 concentrations
to precursor emission changes. To address this challenge, this
study proposed a new method by fitting multiple simulations
of a CTM with a set of polynomial functions, called “pf-
RSM”. The pf-RSM method was successfully applied in a
study of the BTH region in China. The pf-RSM method char-
acterizes the nonlinearity in the air quality response to emis-
sion changes. In the polynomial functions developed in this
study, high degrees were found for the responses to the emis-
sions of NOx , VOC and NH3, which exhibit stronger non-
linear behavior than SO2 and POA. The interaction terms of
NOx and VOC are included for both PM2.5 and O3, indicat-
ing that atmospheric oxidations play a significant role in the
nonlinearity of air quality responses. The interaction term of
NOx and NH3 emissions is also considered for PM2.5, sug-
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gesting nonlinearity in nitrate formation and aerosol thermo-
dynamics.

After the application of a prior knowledge of the pollutant
responsiveness to emissions in the RSM system, the cases
required for single regional pf-RSM development were sub-
stantially decreased to 40 samples, compared with the pre-
vious requirement of over 100 samples, implying that the
fitting-based RSM (i.e., pf-RSM) is 3 times faster than pre-
vious regression-based RSMs (i.e., the number of CTM sim-
ulations needed in pf-RSM is 60 % less than that required
by previous regression-based RSMs). The pf-RSM system in
this study operates rapidly, and thus can quickly generate re-
sponses with high spatial and temporal resolutions, thereby
further facilitating cost-benefit optimization and enabling
further assessment studies to be conducted (e.g., air pollu-
tion control, cost-benefit and attainment assessment ABa-
CAS system described by Xing et al., 2017b). The polyno-
mial functions developed in this study have been successfully
applied in all grid cells across the simulated domain and all
days across the simulated periods for both January and July,
indicating that the combination of terms selected in this study
is spatially and temporally independent as it mainly depends
on the nonlinearity in the atmospheric processes. It means
that only the coefficients of terms need to be fitted with train-
ing samples in another case (Step 3 in Fig. 2), as seen in Table
S4, which provides the coefficients of 15 terms for PM2.5 and
O3 in the BTH region. The degrees and selected terms (Steps
1–2 in Fig. 2) do not need to be recalculated unless there
have been significant updates in the chemistry mechanism in
the CTM. However, it might need to be further confirmed
by more applications in other regions outside BTH and for a
year-long analysis to better represent the seasonality.

Based on the pf-RSM, a series of indicators were calcu-
lated from the polynomial function to represent the nonlin-
earity in control effectiveness for reducing PM2.5 and O3,
including peak ratio (i.e., PR), suggested VOC /NOx ratio
to avoid increasing O3 (i.e., the ratio of VOC to NOx), flex
ratio (i.e., FR) and the extra benefit from simultaneous reduc-
tion of NH3 (µg m−3 PM2.5 per 1 % reduced NH3). We found
strong VOC-limited conditions and NH3-rich conditions for
O3 and PM2.5, respectively, in most urban areas of BTH. Re-
sults suggest that the NOx emission reduction rate needs to
be greater than 20–60 % to pass the transition from VOC lim-
ited to NOx limited, and a simultaneous VOC reduction by
0.5–1.2 times the rate of NOx reduction is recommended to
avoid increasing O3 during the transition in July. Along with
the control of NOx , the simultaneous reduction of NH3 can
provide a considerable benefit in PM2.5 reduction by 0.04–
0.15 µg m−3 per 1 % reduction of NH3. Our results demon-
strate the importance of simultaneous reductions of VOC and
NH3 emissions to enhance the effectiveness of air pollution
controls by NOx emission reductions in the Beijing–Tianjin–
Hebei region in China.

Data availability. Model outputs and pf-RSM code package are
available upon request from the corresponding author.

The Supplement related to this article is available online
at https://doi.org/10.5194/acp-18-7799-2018-supplement.
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