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Due to the computational cost of running regional-scale numerical air quality models, reduced form
models (RFM) have been proposed as computationally efficient simulation tools for characterizing the
pollutant response to many different types of emission reductions. The U.S. Environmental Protection
Agency has developed two types of reduced form models based upon simulations of the Community
Multiscale Air Quality (CMAQ) modeling system. One is based on statistical response surface modeling
(RSM) techniques using a multidimensional kriging approach to approximate the nonlinear chemical and
physical processes. The second approach is based on using sensitivity coefficients estimated with the
Decoupled Direct Method in 3 dimensions (CMAQ-DDM-3D) in a Taylor series approximation for the
nonlinear response of the pollutant concentrations to changes in emissions from specific sectors and
locations. Both types of reduced form models are used to estimate the changes in O3 and PM; 5 across
space associated with emission reductions of NOx and SO, from power plants and other sectors in the
eastern United States. This study provides a direct comparison of the RSM- and DDM-3D-based tools in
terms of: computational cost, model performance against brute force runs, and model response to
changes in emission inputs. For O3, the DDM-3D RFM had slightly better performance on average for low
to moderate emission cuts compared to the kriging-based RSM, but over-predicted O3 disbenefits from
cuts to mobile source NOy in very urban areas. The RSM approach required more up-front computational
cost and produced some spurious O3 increases in response to reductions in power plant emissions.
However the RSM provided more accurate predictions for PM,5 and for predictions of very large
emission cuts (e.g. —60 to —90%). This comparison indicates that there are some important differences in
the output of the two approaches that should be taken under consideration when interpreting results for
a given application.

Published by Elsevier Ltd.
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1. Introduction

Over the last few decades, air quality has improved substantially
in most of the United States, Europe, and elsewhere. In the US,
ambient air concentrations of regulated trace pollutants such as
ozone (0O3), particulate matter (PM), carbon monoxide, nitrogen
dioxide, sulfur dioxide (SO,), and lead have all decreased (US-EPA,
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2012). This was possible from better scientific understanding of the
physical and chemical processes governing the formation of these
pollutants in the troposphere and the subsequent enactment of air
pollution control policies of emission reductions and the emer-
gence of cleaner technology. Still, millions of people in the US are
routinely exposed to air pollutant concentrations above the levels
that have been shown to be associated with increased risks for
cardiovascular and respiratory disease (Lepeule et al., 2012;
Atkinson, 2013). Furthermore, elevated ambient air pollutant con-
centrations are also found to be harmful to agricultural crops
(Booker et al., 2009) and to have a dramatic impact on visibility (Liu
et al., 2012). Thus, further improvements in ambient air quality
would be clearly beneficial to both human health and welfare.

Sources for additional incremental reductions in air pollutant
concentrations over what has already been achieved can be difficult
to identify and prioritize. For this reason, numerical air quality
models have been used as a testbed for quantifying the impacts of
prescribed emission reductions to arrive at physically and
economically feasible strategies for reducing ambient concentra-
tions of O3 and PM. One of these is the Community Multiscale Air
Quality (CMAQ) model, which is widely employed by scientific in-
stitutes and regulatory agencies (www.cmaq-model.org). Tradi-
tionally, such models simulate the “base” level of pollution under
current levels of emissions, and, then, repeat the simulation for
emission levels proposed under a specific control strategy. The
difference (or ratio for attainment demonstrations) between the
“brute force” simulations at any receptor of interest is then
assumed to be the impact of the control strategy. However, it is
often extremely computationally intensive to apply state-of-the-
science air quality models, such as CMAQ, to large geographic re-
gions and long pollution episodes. Therefore, it is often resource
prohibitive to test a large number of control strategies. For this
reason, various source sensitivity and source apportionment tech-
niques have been developed to reduce the size of the numerical
problem (Cohan and Napelenok, 2011). Two of these techniques are
developed and applied here to demonstrate their use for hypo-
thetical emission reductions of a number of different types of
sources over the eastern United States. The first is the response
surface model approach (RSM; US-EPA, 2006), which aims to
describe, using multidimensional kriging across the space defined
by the range of potential emission reductions, the full pollutant
concentration response to changes in emissions as a function of
preselected control variables from a sufficiently large set of brute
force simulations. The second is the Taylor series expansion of the
concentration/emission function based on the model sensitivity
coefficients calculated by the Decoupled Direct Method in three
dimensions (DDM-3D). Both techniques are applied for a domain
over the eastern United States, in order to quantify the impact on O3
and PM;5 levels from hypothetical reductions to state specific
emissions from electric generating units (EGUs) as well as domain-
wide emission cuts to mobile, area, and other sources.

2. Method

All simulations for both methods were conducted using CMAQ
version 4.7.1 (Foley et al., 2010) for August 2005 over the eastern
United States at 12 km horizontal grid resolution and 14 vertical
layers. The standard model configuration was used including the
carbon bond version 2005 chemical mechanism (Sarwar et al.,
2008). Boundary conditions were derived from another simula-
tion over a larger encompassing 36 km domain. Boundary condi-
tions for the 36 km simulation were obtained from a 2005 global
GEOS-Chem simulation (http://wiki.seas.harvard.edu/geos-chem/).
Emission inputs were developed using the Sparse Matrix Operator
Kernel Emissions (SMOKE) processing system version 2.4 (http://

www.smoke-model.org) based on the 2005 National Emissions
Inventory and included year-specific data from the Continuous
Emission Monitoring measurements from combustion and indus-
trial processes. Emission summaries from the 2005 NEI for the
sectors and pollutants of interest in this study are provided in
Table S1 and Fig. S1 in the supplemental material. Meteorological
inputs were processed using the Weather Research and Forecasting
(WRF) model version 3.0 (Skamarock et al., 2008). Additional in-
formation regarding the modeling platform can be found in US-EPA
(2013).

2.1. Development of a RSM-based reduced form model for CMAQ

Previous studies have demonstrated the use of response surface
modeling techniques for the CMAQ model to estimate the human
health benefits of reducing emissions from different sources in nine
urban areas in the US (Fann et al., 2009), to compare the effec-
tiveness of local and regional NOyx and VOC controls in three
megacities in China (Xing et al., 2011), and to quantify the contri-
bution of NH3 emissions to fine particles in heavily developed re-
gions of China (Wang et al.,, 2011). The response surface model
developed here was used to estimate air quality impacts associated
with emission reductions of NOyx and SO, from EGUs and other
pollutants from other sectors in the eastern United States. The RSM
was designed to provide state-specific information on the impacts
of statewide shifts in emissions due to EGU policies, such as trading
programs, and can also be used as a screening tool for comparing
emission control strategies for attainment demonstrations.

The first step in developing an RSM is the selection of the
source/emission factors that are of interest for a given application,
i.e., experimental design. Here the RSM was developed to evaluate
shifts in NOy and SO, emissions at the state level for the EGU sector,
while accounting for interactions with regional emissions of NOy,
SO,, VOC, and NH3 emissions from mobile, area (e.g., agriculture,
residential heating, dust), and non-EGU point sources (e.g., indus-
trial boilers, cement kilns). Although understanding state-specific
EGU emission shifts was the focus of this study, it was not
computationally feasible to designate separate emission factors for
each of the states within the modeling domain. As a solution, the 42
states (including D.C.) are grouped into 15 clusters of one to three
states, in order to reduce the total number of brute force simula-
tions needed to create the RSM. States were grouped a priori based
on zero-out simulations and SO, tracer model experiments such
that the impact from emission cuts in any state would have mini-
mal influence on the other states in its group. For example Group 1
consists of AR, PA and MT (the full group listings are provided in
Fig. S2 in the supplemental material). In this way, although the
emission factors for EGU emissions are based on state groups, it is
still possible to estimate the air quality impacts of emission cuts in a
single state. The final RSM experimental design consisted of 36
emission factors as shown in Table 1, mainly aimed at predicting the
response of PM 5.

The RSM was designed to model changes in the predetermined
emission factors ranging from 0% to 120% of base emission levels.
This means the design space of interest was the 36 dimensional
hypercube[0, 1.2]36 c R36. A two stage sampling design was used to

Table 1
Source/emission factors used in the design of the CMAQ RSM.

Sector Geographical source Pollutant # emission factors
EGU 15 state cluster groups NOy, SO2 30
Mobile Domain wide NOy, VOC, NH3 3
Area Domain Wide NH3 1
Non-EGU Domain Wide NOy, SO, 2
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efficiently sample the design space to minimize the number of
brute force CMAQ simulations needed to estimate the final RSM. In
the first stage, a Latin Hypercube design was used to select 141
CMAQ simulations (a base case run plus 140 control runs). Based on
evaluation of an RSM using these simulations, and past experience
with design of a CMAQ-based RSM, 72 additional simulations were
selected to better estimate the lower bounds (50%—100% cuts) of
NOy and NH3 source categories, to better estimate 25% and 75% cuts
to SO, and VOC source categories, and to capture the upper bound
of the design space of 20% growth. A graphical depiction of the
emission factors (ranging from 0 to 1.2) used for the 213 brute force
CMAQ simulations is shown in Supplemental Fig. S3.

With the brute force simulations complete, a statistical model
was used to estimate the nonlinear relationships between a given
pollutant and the set of 36 emission factors for a given time period.
The statistical model is estimated using maximum likelihood esti-
mation techniques using PROC MIXED in SAS based on monthly
average CMAQ output for O3 and PM; 5. The RSM estimate for the
concentration of species i at location s, based on fractional emission
levels defined by a vectore = (¢1, ..., ¢36) €0, 1.2]%¢, is:

Cio(5) = i + Wi (1i9) - ) (1)

where §; is the estimated mean response across all grid cells, Wi g is
a transposed vector of weights and y;(s) is the vector of pollutant
concentrations from the 213 RSM simulations for location s. The
weights, w; ¢, are determined by estimating a correlation model to
quantify the correlation between the pollutant field under emission
perturbation ¢ and the pollutant fields from the 213 brute force
runs. Here a two parameter Gaussian correlation model is used:
R(¢j, i) = o2e~(di/%) where dj is the Euclidean distance between
the vectors of perturbations, ¢; and ¢y, associated with design
points (e.g. runs) j and k, and ¢ and § are estimated during model
fitting based on pollutant concentrations from all grid cells. As a
result, the brute force simulation that is closest, in terms of
Euclidean distance within the design space, to the new emission
scenario of interest receives the greatest weight. For further details
on the development and estimation of the statistical model see US-
EPA, (2006). Thus, using the formula in Equation (1), it was possible
to estimate the O3 and PM, 5 levels under emission cuts to any
combination of the 36 emission factors without the computational
burden of re-running the entire CMAQ model.

2.2. Development of a DDM-3D-based reduced form model for
CMAQ

While the RSM method described in the previous section has
been shown to be an efficient and accurate approach for exploring a
large set of emission control scenarios (e.g. Wang et al., 2011; Xing

Table 2

Evaluation of RSM and DDM predictions against 10 out-of-sample brute force sim-
ulations. Summary statistics are calculated based on model output at all grid cells
falling within the US boundary for all of the out-of-sample simulations
(n = 10*number US grid cells = 267140).

PMz 5 (ng/m®) 03 (ppb)
RSM 1st order DDM RSM 2nd order DDM
Min bias —-1.11 —1.49 -2.81 -7.76
25th % bias -0.01 0.11 -0.21 -0.011
Median bias 0.01 0.30 -0.03 0.00
75th % bias 0.04 0.57 0.14 0.26
Max bias 1.31 3.91 3.57 11.30
RMSE 0.09 0.52 0.46 0.62
R? 0.999 0.95 0.99 0.96

et al,, 2011), it still required a great deal of up-front computational
cost to develop for this application. A reduced form version of
CMAQ based on the sensitivity coefficients calculated by DDM-3D
was also developed to determine if such an approach would be
competitive with the RSM in terms of accuracy and computational
cost. CMAQ-DDM-3D model version 4.7.1 was used in this appli-
cation, which shares the same chemical and physical modules as
the standard CMAQ model release used for the development of
RSM. The DDM-3D implementation is described in detail elsewhere
(Napelenok et al., 2008). The DDM-3D-based reduced form model
was constructed with particular effort to maintain consistency with
the RSM approach in order to facilitate comparison between the
two methods. Therefore, the state clustering approach for EGU
emissions was maintained identically as described above. First- and
second-order DDM-3D sensitivity coefficients represent the slope
and the curvature of the change in the pollutant concentration for a
given species with respect to changes to the input parameters of
interest. First-order sensitivity coefficients of PM, 5 and first- and
second-order sensitivity coefficients of O3 were calculated to
elevated EGU emissions of NOyx and SO, separately for each of the 15
state groups. Additionally, first-order sensitivity coefficients of
PM, 5 and first- and second-order sensitivity coefficients of O3 were
also calculated to domain-wide emissions of non-EGU point sour-
ces of NOy and SO,, to domain-wide emissions of area sources of
ammonia (NH3), and to domain-wide emissions of mobile sources
of NOy, VOCs, and NHs. All 36 possible first- and second-order pairs
of sensitivities of O3 to the emission factors in Table 1 were
examined. Many of the second-order sensitivities were found to be
close to zero and were dropped from the application. Second-order
“cross” sensitivities (e.g., sensitivity to simultaneous perturbation
of both EGU SO, and EGU NOy) were also not considered to reduce
the size of the computational burden. At the time of simulation,
second-order sensitivity capability for PM species was not yet
available in the CMAQ model. In total, 36 first order sensitivities
were used for PM, 5 and 36 first-order and 18 second-order sen-
sitivities were used for O3 for this application. Taylor series
expansion was then used to construct a reduced form model of each
modeled species as a function of these sensitivity coefficients:

36
1
Cip(s,t) = Cio(s,t) + > (Agj ~s§})(s, £+ iAng ~5§§>(s, t)), 2)
=1

where G g(s,t) is the concentration of species i at location s and time
t under emission perturbation ¢, Gio(s,t) is the base model condi-
tion, SE'J) (s, t) is the first- (1) or second-order (2) sensitivity to a
perturbation in emission source j, and Agj = ¢; — 1 (e.g., for a 20% cut
in emission source j, ¢; = .8, and Agj = —0.2).

The DDM-3D-based model in Equation (2) provided hourly
concentration information. While the RSM approach could be
extended to also provide hourly output by estimating separate
models for each time step, the model in this study is for monthly-
average results since this was the PM; 5 metric of interest. For the
remainder of the discussion, the hourly DDM-3D concentrations for
the month are averaged in order to be consistent with the RSM
output. However, the flexibility of hourly output from either model
could be used to provide additional information on the impacts of
emission cuts on different air quality metrics such as maximum 8 h
average or peak daily ozone (e.g., Simon et al., 2012).

2.3. Computational cost and out of sample validation

The computational cost of the RSM and DDM-3D based tools is
compared for a one month simulation. Using 72 Intel Xeon x5550
processors, a single base CMAQ simulation had a run time
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Fig. 1. Change in monthly-average PM, 5 (jig/m?) after (a) RSM: 50% cut to EGU emissions in OH (b) DDM: 50% cut to EGU emissions in OH (c) RSM: 50% cut to NH3 emissions from

agriculture sources (d) DDM: 50% cut to NH3 emissions from agriculture sources.

requirement of 0.42 days. The 213 simulations used to build the
RSM required 89.5 days. All 90 DDM-3D sensitivities were calcu-
lated in a single model simulation requiring 10 days of run time,
offering a clear advantage over the RSM approach in terms of the
initial computational cost. Once the brute force and DDM-3D runs
are complete, both tools can provide near-instantaneous estimates
of the pollutant response to user-defined changes to the 36 emis-
sion factors.

The two methods were evaluated using brute force simulations.
A random sample of ten of the available simulations generated by
the Latin hypercube sample were withheld from the development
of the RSM (see Supplemental Fig. S3), and the RSM- and DDM-3D
based models were used to predict pollutant concentrations for
these out-of-sample runs. Summary statistics of the prediction er-
ror at all grid cells within the US boundary are given in Table 2. The
RSM predictions for changes in PM; 5 due to emission reductions
had very low bias and error, whereas the DDM-based predictions
tended to be biased high by 0.1-0.6 pg/m?>. This implies that the
reduced form model will under predict the decrease in PM;ys
concentrations resulting from a reduction in emissions. This will be
further discussed in Sections 3 and 4.

The bias in predicting O3 was more similar between the two
methods with 75% of the prediction error falling within about
+0.25 ppb for both methods. The DDM-3D-based model did pro-
duce a few very large errors (less than 0.1% of the grid cells had an
absolute error greater than 5 ppb). This is because the Taylor-
expansion approach was not expected to accurately estimate very
large changes in emission inputs that were used in these out-of-

sample simulations (e.g., cuts up to 70—99% of base levels). Previ-
ous studies have demonstrated the accuracy of DDM-3D for emis-
sion perturbations within +50% (Cohan et al., 2005; Simon et al.,
2012). This behavior was also evident in the validation analysis,
where errors in the DDM-3D-based predictions for O3 tended to
increase with increasingly large cuts to NOy emissions from mobile
sources. For cuts within +50% the bias in the second order DDM-
3D-based predictions actually tended to be less than the RSM
prediction bias (see Supplemental Fig. S4).

3. Application: comparison of local versus regional emission
controls in the eastern US

The advantage of developing a reduced form version of the
CMAQ model is the ability to rapidly assess the impacts of many
different emission reduction strategies. For demonstration of this
capability, the impact of the differences between the RSM- and
DDM-3D-based methods shown in Section 2 on a specific appli-
cation were investigated. Specifically, the following questions were
explored: How do state-specific EGU controls compare to regional
controls (e.g., mobile or agricultural emissions) for a given state?
How do state-specific EGU controls impact states adjacent or near
the state of interest?

Figs.1 and 2 show example output from the RSM- and DDM-3D-
based reduced form models. Fig. 1 shows the predicted change in
PM, 5 resulting from a 50% cut to NOy and SO, emissions from EGUs
in the State of Ohio (OH) and the change after a domain-wide 50%
cut in NH3 emissions from area sources. Both methods show that
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(b)

Fig. 2. Change in monthly-average O (ppb) after (a) RSM: 50% cut to EGU emissions in OH (b) DDM: 50% cut to EGU emissions in OH (c) RSM: 50% cut to NOy emissions from mobile

sources (d) DDM: 50% cut to NOy emissions from mobile sources.

the OH EGU controls impact surrounding states in the region.
Consistent with the evaluation in Section 2, the DDM-3D-based
model predicts less of a decrease in PM,5 for both scenarios,
compared to the RSM predictions. The domain-wide average
change in PM; 5 concentrations after the emission cut to OH EGU
emissions was —0.05 pg/m? using the DDM-3D approach compared
to —0.08 pg/m> using the RSM. The maximum difference between
the two methods was in a grid cell in OH with a DDM-3D based
predicted change of —0.57 pg/m> and a RSM prediction of —1.01 pg/
m?>. For the emission cut to NH3 emissions, the DDM-3D approach
predicted a domain-wide average change in PM, 5 of —0.20 pg/m>
compared to an average change of —0.22 pg/m’ using the RSM. The
maximum difference between the two methods was in a grid cell at
the border of OH an IN that had a DDM-3D based predicted change
of —0.95 pg/m> and a RSM prediction of —2.02 pg/m>.

Fig. 2 shows the predicted change in O3 after a 50% cut to OH
EGU emissions and the change after a domain-wide 50% cut to NOy
emissions from mobile sources. The main difference in the O3
response to EGU emission cuts is that the RSM approach predicts
small O3 increases away from the actual emission change. Such
increases are unrealistic and reflect a spurious result in the statis-
tical model that was not seen in the underlying brute force simu-
lations. Additional brute force simulations would be needed to
better capture the nonlinear relationship between O3 and emission
inputs to resolve this issue. Separate experimental designs may
need to be considered for O3 and PM; 5 for future complex multi-
region applications.

The O3 response to a 50% cut to NOx emissions from mobile
sources is similar for both methods for most of the region, with the
exception of urban areas. The DDM-3D-based model predicts larger
increases in O3 in very urban areas compared to the RSM approach.
These increases represent Os disbenefits due to decreased Os
titration with decreasing NOx emissions. Evaluation against brute
force simulations suggests that the DDM-3D predictions are
1.5—2 ppb too high in these locations while the disbenefits pre-
dicted by the RSM approach are more in-line with the underlying
brute force results.

A summary of the pollutant response to 50% emission cuts in
different sectors for seven states is shown in Fig. 3. The seven states
were selected as an illustration and had the largest state-wide
average PM 5 concentrations in the domain in the base simula-
tion. Results for the other states in the domain are provided in
Tables S2 and S3 in the supplemental material. The barplots depict
population-weighted state-wide average pollutant changes. The
weighting, based on census tract population data from the 2000
census (see Supplemental Fig. S5), was used to focus on the benefits
of emission controls on human exposure levels, the emphasis of
this application.

For PM, 5 controls four sectors were compared: (1) NOy and SO,
emissions from EGUs in the listed state (Local EGU); (2) NOx and
SO, emissions from EGUs in all other states in the domain (Outside
EGU); (3) domain-wide NOy emissions from mobile sources (Mo-
bile NOy); (4) domain wide NH3 emissions from area sources (Area
NH3). Due to the state-clustering used in the design of this RSM it
was not feasible to estimate the response in a given state to
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Fig. 3. Population-weighted state-wide average change in (a) PM; 5 and (b) O3 due to 50% emission cuts in different sectors. Estimates based on the RSM are shown on the left for
each state; DDM-3D-based results are on the right. Note that results for “Maryland” are estimates for all grid cells falling within Maryland, Delaware and D.C. (Note that Fig. S6 in the
Supplemental Material provides a version of these figures without the population-weighting.)

simultaneous EGU cuts in all surrounding states. Instead, to
approximate the impact from outside EGU controls, the impacts on
a given state to cuts in the other states in the domain were esti-
mated separately and then summed together. This approximation is
likely slightly larger in magnitude than a simultaneous shift due to
nonlinearities in the relationship between PM,s5 (or Os3) and
emissions. However, this information is still valuable for under-
standing the role of outside emission sources on local pollutant
levels.

The DDM-3D-based estimates for the population-weighted
change in PM,5 due to changes in region-wide Area NH3; were
found to be very similar to the RSM results. This shows that some of
the spatial differences appearing in Fig. 1(c) and (d) are less
important when focus is on highly-populated grid cells. Consistent
with the previous evaluation, the DDM-3D-based results for both
Local and Outside EGU controls were smaller in magnitude
compared to the RSM results, providing estimates of control im-
pacts that are too conservative. This bias could lead policy makers
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to under-estimate the efficacy of EGU controls compared to the
other regional controls.

For O3, controls for Local EGU, Outside EGU, Mobile NOy, as well
as NOy emissions from non-EGU sources (NonEGU NOy) were
compared. Both methods predicted the largest decreases in O3
levels result from cuts to mobile NOy emissions, rather than EGU
controls. This reflects the fact that a 50% cut to precursor NOx
emissions from mobile sources represents a much larger emission
reduction in terms of total tonnage, compared to a 50% reduction in
NOy emissions from EGUs in this domain (see Supplemental
Table S1). Estimates for the impacts of Local EGU controls were
very similar for the RSM- and DDM-3D-based approaches. How-
ever, for Outside EGU controls, the RSM-based model predicted O3
disbenefits in most of the states due to the spurious O3 increases
mentioned earlier. In contrast, the DDM-3D-based method pre-
dicted Outside EGU controls to lead to O3 decreases of 0.6—1.2 ppb.

This set of emission reductions was chosen for illustrative pur-
poses. Both RSM and DDM tools offer the flexibility to explore a
much wider range of reduction scenarios in terms of the size and
source of the reduction. Here, it was shown that there are some
important differences in the output of the two methods that should
be taken under consideration when interpreting results for a given
application.

4. Conclusions

The statistical Response Surface Model and the sensitivity-based
DDM-3D approach for approximating CMAQ output were shown to
have different advantages and disadvantages for estimating the
impact of emission reductions from different sources and locations.
The RSM required roughly 9 times the up-front computational re-
sources, but provided more accurate predictions for very large
emission cuts (e.g. —70 to —99%). The DDM-3D approach is not
designed to handle such large emission changes. For PM;5, the
DDM-3D-based results are biased high (under-responsive for
emission reductions) compared to the RSM results. Second order
DDM for PM3 5 is currently scheduled for release in the next version
of the CMAQ model (v5.0.2) and should address some of the bias
seen in this study. Additional cross-sensitivities could also be
included in the DDM formulation to better capture potential in-
teractions between NOy, SO, and NHj3 across multiple sources,
although this would necessarily increase the computational cost.
The RSM approach is designed to model such interactions through
careful selection of the underlying brute force simulations.

For O3, DDM-3D had slightly better performance on average for
low to moderate emission cuts but over-predicted O3 disbenefits
from cuts to mobile source NOy in very urban areas. The RSM
produced some spurious O3 increases far away from the location of
the EGU emission cuts. Separate experimental designs may need to
be developed for O3 and PM, 5 for future applications involving
many different source regions.

Reduced form methods such as the RSM- and DDM-3D-based
approaches offer computationally efficient screening methods for
rapidly comparing a large number of emission reduction options
while still leveraging the complexity of the physical and chemical
processes represented within the underlying state of the science air
quality model. Information from these types of tools can be used to
then select a smaller set of more refined brute force simulations to
run for an attainment demonstration or other regulatory modeling
needs. Future work in this area includes extending the RSM and
DDM-3D methods to estimating single source impacts, e.g., impact
of a single power plant for permitting purposes.
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