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18 ABSTRACT

19 Urban and regional ozone (O3) pollution is a public health concern and causes damage to 

20 ecosystems. Due to the diverse emission sources of O3 precursor and the complex interactions 

21 of air dispersion and chemistry, identifying the contributing sources for O3 pollution requires 

22 integrated analysis for guiding emission reduction plans. In this study, the meteorological 

23 characteristics leading to O3 polluted days (in which the O3 levels are higher than the defined 

24 standard) in Guangzhou (GZ, China) were analyzed using the 2019 data. The O3 formation 

25 regimes, source apportionments under various prevailing wind directions were evaluated using 

26 a Response Surface Modeling (RSM) approach. The results show that O3 polluted days in GZ 

27 2019 can be classified into four types of synoptic patterns (i.e., cyclone, anticyclone, trough, 

28 and high pressure approaching to sea) and are strongly correlated with high ambient 

29 temperature, low relative humidity, week wind speed, variable wind directions. Additionally, 

30 the cyclone pattern strongly promotes O3 formation due to its peripheral subsidence. The O3 

31 formation is NOx-limited under the northerly wind while VOC-limited under other prevailing 

32 wind directions in GZ. Anthropogenic emissions contribute largely to the O3 formation of GZ 

33 (54-78%) under the westerly, southwesterly, easterly, southeasterly, or southerly wind, but only 

34 moderately (35-47%) under the northerly or northeasterly wind. Furthermore, local emissions 

35 have the largest O3 contributions (39-60%) regardless of prevailing wind directions, especially 

36 the local NOx contributions (19-43%). The dominant upwind regional emissions contributed to 

37 12-46% of the O3 formation in GZ (e.g., DG contributions are 12-20% under the southeasterly 

38 wind). The emission control strategies for O3 polluted days should focus on local emission 

39 sources in conjunction with the emission reduction of upwind regional sources.

40
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299 Apart from the local contributions, the major regional emission source contributors in 

300 different O3 episodes are closely related to the prevailing wind direction. Under the northerly 

301 wind, the O3 and its precursors may be transported from the northern PRD (i.g., Qingyuan) to 

302 GZ, thus, OTH-NOx emissions show an obvious impact of 26-37% and OTH-VOC 

303 contributions are also great accounting for 7-12%. Similar to that under the northerly wind, 

304 OTH-NOx contributions account for a large amount of 19% under the northeasterly wind. When 

305 the westerly wind prevails, FS-NOx and FS-VOC contribute a substantial percentage of 13-17% 

306 and 7-10% respectively to the O3 in GZ, because FS is an essential industrial/manufacture base 

307 and a comprehensive transportation hub in the PRD with intensive VOC and NOx emissions; 

308 besides, OTH-NOx contributions also account for a relatively large proportion of 10-15%. 

309 Under the southwesterly wind, FS-NOx has a large O3 contribution of 13%; OTH-NOx also 

310 occupies a nonnegligible proportion of 11% which may mostly be from Zhaoqing (an important 

311 transportation hub that connects economically developed regions with southwestern provinces) 

312 and Zhuhai (a major coastal port of China). Under the southerly wind, FS also has a great 

313 impact, with FS-NOx and FS-VOC contributions accounting for 10-13% and 7-8% respectively. 

314 DG is a city with relatively rapid urbanization in the PRD, containing large amounts of 

315 industrial factories and vehicles, thus under the southeasterly wind, DG-NOx and DG-VOC 

316 contributions are great accounting for 5-11% and 6-11% respectively; OTH-NOx also has an 

317 important impact of 5-10%, which may result from the intensive emissions in the coastal areas 

318 of OTH. Resemble the situations under the southeasterly wind, when the easterly wind prevails, 

319 DG-VOC and DG-NOx contributions account for 8% and 6-7%, respectively; the contributions 

320 from OTH increase slightly, with OTH-NOx contributions accounting for 7-8%.
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321 4  Conclusions

322 In this study, the meteorological characteristics leading to O3 polluted days in GZ were 

323 analyzed in a typical year (2019) with frequent O3 episodes, and the O3 formation regimes and 

324 source apportionments in O3 episodes under various prevailing wind directions are 

325 comprehensively evaluated based on the pf-ERSM-DM system.

326 The ambient O3 pollution is strongly related to meteorological patterns. The O3 polluted 

327 days in GZ 2019 can be classified into four major synoptic patterns (i.e., cyclone, anticyclone, 

328 trough, and high pressure approaching to sea) and they generally exhibit similar meteorological 

329 characteristics favoring the chemical production of O3 in GZ, including high mean temperature 

330 (26-31℃), low mean relative humidity (48-54%), weak mean wind speed (1.08-1.34m/s) and 

331 variable prevailing wind directions. Additionally, the cyclone pattern strongly promotes O3 

332 formation due to its peripheral subsidence.

333 From the perspective of emission control in O3 polluted days, it is momentous to identify 

334 the O3 formation regime and quantitatively comprehend the precursor emissions in shaping 

335 anthropogenic and background contributions. The O3 formation regime and source 

336 apportionment results are highly related to the prevailing wind directions due to the abundant 

337 pollutants transported from the anthropogenic emission sources in the upwind areas. Under the 

338 westerly, southwesterly, easterly, southeasterly, or southerly wind, the O3 formation in GZ is 

339 generally VOC-limited and the anthropogenic emissions have large O3 contributions (54-78%); 

340 while under the northeasterly or northerly wind, the O3 formation is weak VOC-limited and 

341 NOx-limited respectively, and the anthropogenic contributions are relatively moderate (35-47%) 

342 resulting in comparatively high background O3 concentrations which even exceed the China 

343 Class I National O3 Standard (100μg/m3). In terms of anthropogenic contributions, the local 

344 contributions account for the largest proportion (39-60%) regardless of prevailing wind 
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345 directions, especially the GZ-NOx which occupies a high contribution ratio (19-43%); upwind 

346 regional emission sources also had large O3 contributions (12-46%).

347 Consequently, the sound emission control strategies for O3 polluted days should be 

348 implemented with the consideration of prevailing wind direction. First, the NOx control (even 

349 at slight reductions) should be strengthened under the northerly wind; while the short-term 

350 coordinated control of VOC and NOx and long-term enhanced control of NOx are suggested 

351 under the other prevailing wind directions. Second, the city-scale cooperation on anthropogenic 

352 emission reductions within the PRD should be enhanced under the westerly, southwesterly, 

353 easterly, southeasterly, or southerly wind; whereas the emission control on a larger spatial scale 

354 rather than only the PRD will be more effective under the northerly or northeasterly wind. 

355 Finally, the prior control of local precursor emissions in conjunction with flexible reinforcing 

356 upwind regional emission control based on prevailing wind direction is recommended to reduce 

357 the O3 levels and improve the O3 attainment rate in GZ.
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473 Figures and Tables

474

475 Fig. 1. The flow scheme for response surface model based emission source contribution and 

476 meteorological pattern analysis in ozone polluted days.

477

478

479 Fig. 2. Three simulation domains and the regions in the d03 domain. GZ - Guangzhou; FS - 

480 Foshan; ZS - Zhongshan; JM - Jiangmen; DG - Dongguan; SZ - Shenzhen; HZ – Huizhou; 

481 OTH – The other regions in the d03 domain.
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482

483 Fig. 3. The 2-D isopleths of O3 response in GZ to AVOC and NOx emission changes from all 

484 source regions in the d03 domain and their matching PR value. The X and Y-axes show the 

485 emission ratio of AVOC and NOx for the entire d03 domain; Different O3 concentrations are 

486 presented in different colors.
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